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Abstract

We present a model for high-energy solar flares to explain prompt proton and electron acceleration, which occurs
around moving X-point magnetic field during the implosion phase of the current sheet. We derive the

electromagnetic fields during the strong implosion of the current sheet, which is driven by the converging flow
toward the center of the magnetic arcade. We investigated test particle motion in the strong electromagnetic fields
derived from the MHD equations. It is shown that both protons and electrons can be promptly(within 1 s)
accelerated to _ 70 MeV and ~ 200 MeV, respectively. This acceleration mechanism can be applicable for the
impulsive phase of the gradual gamma ray and proton flares(gradual GR/P flare), which have been called two-
ribbon flares.

1. Introduction

One of the important problems in high-energy solar flare physics is to understand the physical mechanism(s) of high
energy particle acceleration during solar flares. From the observations by SMM and Hinotori satellites, it became
clear that there are two classes of gamma-ray/proton(GR/P) flares- impulsive GR/P flares and gradual GR/P flares(
see, for a review, Bai and Sttwrock 1989). The GR/P flares refer to flares that produce nuclear gamma-rays and /or
energetic interplanetary protons. Most short flares(< 100 s) corresponds to be impulsive GR/P flares, while most of
the long-duration flares(> 200 s) corresponds to the gradual GRiP flares. In the impulsive GR/P flares there are two
phases of particle acceleration : the first phase is that both electrons and protons are accelerated to _ 10 MeV and to
~ 100 MeV energies, respectively, within 1 s (Kane et al. 1986; Riger 1989), and second phase is that electrons up
to 100 MeV and protons up to GeV energies are accelerated within a few seconds to 100 s.

In order to explain the above prompt particle acceleration to relativistic energies, Sakai(1990) showed that during
the 3D X-type current loop coalescence, where two crossed flux tubes interact in one point, both protons and

electrons can be promptly(within less than 1 s) accelerated to ~ 100 GeV and _ 100 MeV, respectively. De Jager and
Sakai (1991) showed that the burst duration of elementary flare bursts(5-25 s) observed during the impulsive GPUP
flares can be explained quantitatively by the mechanism of the 3D X-type current loop coalescence.

In the present paper we show a model for the long-duration gamma ray/proton flare(the gradual GPUP flares) to
explain prompt proton and electron acceleration during the impulsive phase. These flares have [wen called two-

ribbon flares and almost all gradual GR/P flares show impulsive behaviour in the beginning of the hard X-ray
emission and gradual behaviour later on (Bai and Sturrock 1989 ). In most large two-ribbon flares with filament
eruptions the filament begins to move up several minutes or more before the onset of the impulsive phase(Martin
and Ramsey 1972; Kahler et al. 1988). Recently Sakai and Koide (1991) presented a theory of the filament eruption
before the impulsive phase of solar flares. Figure 1 shows a schematic picture of the global magnetic field
configuration and the filament which is located above the X-point magnetic configuration near the center of the
magnetic arcade. Sakai and Koide (1991) showed that the upward motion of the X-point which may trace the

filament eruption begins several minutes before the impulsive phase where the magnetic field, Bx produced by the
current near the X-point can exceed the magnetic field, Bz along the filament. If the Bx exceeds the Bz, then the

explosive magnetic reconnection (Tajima 1982; Sakai et al. 1984; Sakai and Ohsawa 1987) can be triggered in the
current sheet. During the implosion phase of the current sheet, the strong electric field can be induced by the strong
converging flow around the X-point.

In Section 2 we drive the electromagnetic fields during the implosion phase of the current sheet from the MHD
equation. In Section 3 we investigate a test proton and electron motion under the electromagnetic fields derived in
the previous section. We will show that both protons and electrons can be promptly accelerated within 1 s to ~ 70
/VleV and ~ 200 MeV, respectively. In Section 4 we sunmmrize our results.
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2. Electromagnetic Fields around Moving X-point

2.1 MHD Equation and Energy Equation
In this section we present basic equations describing the dynamics of the current sheet near the magnetic X-point,
which is located under the filament as shown in Figure 1. We assume that the filament is supported in the upper part
of the X-type magnetic field along the z-direction, in which there exists the magnetic field, Bz. Following the
gradual shearing motion at the footpoint of the magnetic arcade, the plasma upward motion can be induced, and the
current near the X-point can be increased due to the converging flow near the current sheet. The current sheet
continues to elongate to the vertical direction, and to become thin in the horizontal direction. We will focus on the
dynamics of the plasma around the X-point to determine the electromagnetic fields during thinning of the current
sheet. The x-axis is taken in the vertical direction, and the y-axis is in the horizontal direction. The current sheet is
assumed to be homogeneous in the horizontal z-direction.
We begin from the following MHD equations including the gravity and Joule heating effect in the energy equation;
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where r, v, P, B are the density, velocity, pressure, and magnetic field, respectively, and '/ is the adiabatic constant.
The gravitational acceleration is given by

-2

• (5)
where R = Rs + r0 and go = GMs R-2 • Ms, Rs and r0 are the solar mass, solar radius and distance to the

origin of the coordinate from the solar surface, respectively. The right-hand side in Equation (4) shows the effect of
the Joule heating.

2.2 Electromagnetic Fields around the Current Sheet
During the gradual shearing motion of the photosphere, the current near the magnetic X-point can increase due to

horizontal plasma inflows from both sides. This horizontal plasma flow, Vy around the X-point can be approximately
given by

(6)

where a(t) is a time dependent scale factor. The scale factor a(t), which is determined later, characterizes continuous
change of thickness of the current sheet due to the plasma inflows. The vertical flow, vx is taken to be
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where vx0(t) and another scale factor b(t) are determined self-consistently later.
The components of the magnetic field are taken as

(7)

y
Bx= R,0(t)z

, (8)

X

By- _(t)+ By0(t)-_

Bz=_o(t)

, (9)

(10)

where )_ is a characteristic scale-length of the current sheet, which can be considered to be the same as the radius

of the filament located above the X-point. The magnetic field Bn in Equation (9) shows a role that the X-point can

move during the evolution of the current sheet. Unknown fimctions, Bx0, Bn, By 0 and Bz0 can be determined, self-
consistently later.

Substituting Equations (6) and (7) into Equation (1), we find that the density p(t) is only a function of time and
given by

p(t) Po
a( t )b( t )

(11)

where Po is a constant.

From the induction equation (3), using the expression for the magnetic fields (8)-(10) and velocities (6) and (7),
we find

Bx0 m

2
a

dB n Vxo
+

dt _. B_ +B_b\dt] =0

where B0 and Boo are constants.

We assume the pressure P(x,y,t) to be

(12)

(13)

(14)

(15)

P( x, y,t) = Poo(t) - Po( t)-_- P_o( t)(_) 2 - Pyo(t)( Y) _
(16)

We here summarize normalized basic equations, which will be numerically solved in the next section,
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where 13p= Cs2/Vap 2 is plasma beta-ratio, which is determined from the magnetic field, B0 produced by the
current induced near the X-point. The magnetic Reynolds number, S is S= XB/XA( Xa = 4_a_.2/C 2 ). The

parameters G1 in Equation (18) and G2 in Equation (20) are given as

2g0zA2
G l -

R
(23)

G 2 - go'rA
V

ap (24)

In the above equations (17)-(22), the time, Bn0, Vx0, P0, P00 are normalized by XA = k / V_ , 130, vat,, Pa and Pa,

respectively.

The normalized time-dependent part of the magnetic fields, Bx and Bz are given by

1
B_ = --"i"

a (25)

Bza = R b --_
, (26)

where Rb= Boo/Bogives the initial ratio between Bz and By.
The electric field E induced by the change of the magnetic field 13(eqs. [8]-[10] ) can be determined from

Ef-vxB/c .
(27)

By use of equations (6)-(10), we obtain the components of the inductive electric field;
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We can obtain numerical results of the electromagnetic fields by solving the basic equations (17)-(20). The initial
conditions are taken as a = 1, da/dt = -0.001, b = 2, db/dt =0, Bn : 0.01, Vx0 = 0.001, and other parameters are

taken as GI = 0.01, CJ2 = 0.27, S = 105, and Rb = B00/B0 = 100Jl0. The plasma beta-ratio [_p is 1.0 and the
adiabatic ratio is y = 5/3.

Some components of the inductive electric fields become explosively strong near the time 1.18 XA. The reason is

due to the fact that near the implosion phase, the converging flow, vy is increased by about 100 times and the
magnetic field, Bxa is also increased by about 150 times through the current pinch. Therefore, the inductive electric

field Ex = vyBx0/C can be amplified to 1.5 x 104 times, compared with the initial valucs. This inductive electric

field before the implosion is about 70 V/m, if we take Vap = 7x 106 cm/s and B0 = 10 G. The inductive electric

field near the implosion can become Ex ~ 106 V/m. This strong electric field near the implosion is important for

the high-energy particle acceleration. If we take _.= 2x109 cm, the Alfvcn transit time "tA is "tA = ;VVap = 300 s.
Then the duration of implosion is about 0.01 "ta = 3 s. As seen in the next section, the acceleration time for both

protons and electrons is quite rapid compared with the duration of implosion, 3 s. Thercfore we will investigate the
motion of a test particle under the electromagnetic fields (28)-(30) in the next section.

3. Proton and Electron Acceleration

3.1 Equation of Motion
We consider the motion of a test proton under the electromagnetic fields given by equations (28)-(30)

¥= c --U-_j (31)

/2x
Z-- R ,V-

P (32)

dt = RVF v
(33)

dZ R.L
r, (34)

wherel _ :P/mpc, 1_ =E/Eo, 13 :BgB0, Rp=c_./mcp),. _:x L_=y/_.,7:_.'L
i 1The time "s normalized by the proton cyclotron period m- cp (T= mcp t, mcp el?,o,' mpc ).
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3.2 Numerical Results for Proton Acceleration

The time-dependent amplitudes of the electromagnetic fields are assumed to be constant during the acceleration

time, because the typical acceleration time to relativistic energy for the proton is about 105 to-lcp, which is about
1 s for I30 = I0 G and is still within the duration of implosion, ~ 0.01XA = 3 s. We investigate the motion of the

proton at the time, t = 1.168 XA. The electromagnetic field amplitudes at the time, t = 1.168 XA are Bxa = 119.6,

Bya= 0.11, Bza = 37.0, Bn = -0.11, EXI = -2908.28, EY0 = 35.5, EY1 = 25.5, EZ 1 = 0.079, EZ2 = -9391.1, EZ 0

= -0.113 and EZx = 0.029. We take Rp = C/mcpL -- 10 -5 and Yap/c = 1/4300. We show the results for the

initial conditions with x(0)=y(0)=z(0)=0.5, Px=Py:Pz = 10-4. Figure 2 shows the time history of the Lorentz factor

F = ( 1 + p2 ) 1/2 for the proton. Figure 3 shows the time history of the momentum for the proton. The proton can be

accelerated to the x- and y-direction. As seen in Figure_, the average value of the momentum Px increases almost

proportional to the time. Therefore we can evaluate the time dependency of the momentum Px as

2.5x -4= 10 coopt + 10 -4 , (35)

for y(0) : 0.5. Similarly, we find

-5

= 1.0 x 10 tot + 10 -4
(36)

for y(O) = O. 1 and

= 4.0 x 10-6o%1 + 10 -4
, (37)

for y(0) = 0.05. These results are almost same for the initial momentum in the range of P(O) = 10-6 to 10 -4 as well
as for the other initial positions, x(0) and z(0). Therefore we conclude that within about one second of the

implosion time the proton can be accelerated to ~ 70 MeV for protons with y(0)> 0.05.

3.3 Numerical Results for Electron Acceleration

In this section we present numerical results for electron acceleration by solving the following equations of motion
for a test electron.

The time is normalized by the electron cyclotron period c0-1ce ('_= race t, race = eB0/me c ). We take Re = 10-8

and Yap Jc = lJ 4300. The initial conditions for the electron are x(0)=y(0)=z(0)=0.5, Px=Py=Pz= 10-4. The

electromagnetic fields are taken as the same one for the proton's case. Figure 4 shows the time history of the
electron Lorcntz factor F e and Px /mec. As seen in the lower part of Figure 4, the electron can be accelerated to the

negative x-direction opposite the proton(see Figure 3). From the numerical calculation we find the time
dependency of the average momentum Px as

4--2.5x10 meet+ 10 -4
(38)

for y(O) = 0.5,

=l.0xl0 tOc,t +10-4
(39)

for y(0) : O. 1 and

= 4.0 x l0 t%et + 10-4 , (40)

for y(0) : 0.05. These results are almost same for the initial momentum in the range of P(0) = 10-6 to 10-4 as well

as for the other initial positions, x(0) and z(0). As the electron cyclotron frequency is t,)cc = 108 s"1 for B0 = 10G,
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we conclude from Equation (_8) that within 1 s the electron with y(0)> 0.05 can be accelerated up to ~ 200 MeV.

4. Summary
In this paper, we presented a model for high-energy solar flares to explain prompt proton and electron acceleration,
which occurs around moving X-point magnetic field. We derived the non-stationary electromagnetic fields during
the strong implosion of the current sheet, which is driven by the converging flow toward the center of the magnetic

arcade. We investigated a test particle motion in the electromagnetic fields derived from the MHD equations. It has
been shown that both protons and electrons can be promptly(within 1 s ) accelerated up to _ 70 MeV and - 200
MeV, respectively. This acceleration process can be applicable for the impulsive phase of the gradual gamma ray
and proton flares(gradual GR/P flare), which have been called two-ribbonflares.
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Fig.2 Time history of the proton's Lorentz factor.

Fig. 1 Schematic magnetic configumlion and coordinate system.
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Fig.4 Time history of the electron's l,orentz
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Fig.3 Time history of the proton's
momentum.
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